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ABSTRACT 
We introduce Project Sidewalk, a new web-based tool that 
enables online crowdworkers to remotely label pedestrian-
related accessibility problems by virtually walking through 
city streets in Google Street View. To train, engage, and 
sustain users, we apply basic game design principles such as 
interactive onboarding, mission-based tasks, and progress 
dashboards. In an 18-month deployment study, 797 online 
users contributed 208,137 labels and audited 2,941 miles of 
Washington DC streets. We compare behavioral and labeling 
quality differences between paid crowdworkers and 
volunteers, investigate the effects of label type, label 
severity, and majority vote on accuracy, and analyze 
common labeling errors. To complement these findings, we 
report on an interview study with three key stakeholder 
groups (N=14) soliciting reactions to our tool and methods. 
Our findings demonstrate the potential of virtually auditing 
urban accessibility and highlight tradeoffs between 
scalability and quality compared to traditional approaches. 
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ACM Classification Keywords 
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INTRODUCTION 
Geographic Information Systems (GIS) such as Google 
Maps, Waze, and Yelp have transformed the way people 
travel and access information about the physical world. 
While these systems contain terabytes of data about road 
networks and points of interest (POIs), their information 
about physical accessibility is commensurately poor. GIS 
websites like Axsmap.com, Wheelmap.org, and 
AccessTogether.org aim to address this problem by 
collecting location-based accessibility information provided 
by volunteers (i.e., crowdsourcing). While these efforts are 

important and commendable, their value propositions are 
intrinsically tied to the amount and quality of data they 
collect. In a recent review of accessibility-oriented GIS sites, 
Ding et al. [15] found that most suffered from serious data 
sparseness issues. For example, only 1.6% of the Wheelmap 
POIs had data entered on accessibility. One key limiting 
factor is the reliance on local populations with physical 
experience of a place for data collection. While local  users 
who report data are likely to be reliable, the dependence on 
in situ reporting dramatically limits scalability—both who 
can supply data and how much data they can easily supply. 

In contrast, we are exploring a different approach embodied 
in a new interactive tool called Project Sidewalk (Figure 2), 
which enables online crowdworkers to contribute physical-
world accessibility information by virtually walking through 
city streets in Google Street View (GSV)—similar to a first-
person video game. Rather than pulling solely from local 
populations, our potential pool of users scales to anyone with 
an Internet connection and a web browser. Project Sidewalk 
extends previous work in streetscape imagery auditing tools 
like Canvas [4], Spotlight [7], BusStop CSI [22], and Tohme 
[25], all which demonstrate the feasibility of virtual auditing 
and, crucially, that virtual audit data has high concordance 
with traditional physical audits. However, this past work has 
focused on small spatial regions, relied on specialized user 
populations such as public health researchers [4,7] and paid 
crowdworkers [22,25], and has not been publicly deployed. 

In this paper, we present an 18-month deployment study of 
Project Sidewalk in Washington DC. In total, 797 users 
contributed 208,137 geo-located accessibility labels and 
virtually audited the entirety of Washington DC (1,075 miles 
of city streets; see Figure 1). As the first public deployment 
of a virtual auditing tool, our research questions are 
exploratory: How can we engage, train, and sustain crowd 
workers in virtual accessibility audits? Are there behavioral 
and/or labeling quality differences between paid crowd 
workers and volunteers? What are some common labeling 
mistakes and how may we correct them in future tools? 
Finally, how do key stakeholder groups react to our tool and 
what are some of their concerns? 
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Figure 1. In an 18-month deployment study of Project Sidewalk, we collected 208,137 sidewalk accessibility labels, including curb ramps, missing curb 
ramps, sidewalk obstacles, and surface problems. Each dot above represents a geo-located label rendered at 50% translucency. 



To address these questions, we analyzed interaction logs 
from our DC deployment, performed a semi-controlled data 
validation study, and conducted semi-structured interviews 
with three stakeholder groups (N=14): government officials, 
people with mobility impairments (MI), and caretakers. In 
our deployment study, we found that registered volunteers 
completed significantly more missions, on average, than our 
anonymous volunteers (M=1.5 vs. 5.8) and that our paid 
workers—who were compensated per mission—completed 
more than both (M=35.4 missions). In the data validation 
study, paid workers also significantly outperformed 
registered and anonymous volunteers in finding accessibility 
problems (recall=68% vs. 61% and 49%, respectively) but 
precision was roughly equivalent for all groups (~70%). Our 
findings also show that the number of issues found 
significantly increases with the number of labelers per 
street—with five labelers, recall rose from 68% to 92%.  

To complement these findings, our interview study asked 
about perceptions of and experiences with urban 
accessibility and solicited reactions to Project Sidewalk and 
the idea of crowdsourcing accessibility in general. All three 
stakeholder groups were positive: while government officials 
emphasized cost-savings and civic engagement, the MI and 
caregiver groups focused more on personal utility and 
enhanced independence. Key concerns also arose, including 
data reliability, maintenance, and, for the MI participants, 
whether labels properly reflected their accessibility 
challenges (the latter echoes findings from [23]).  

In summary, the contributions of this paper include: (i)  
Project Sidewalk, a novel web-based virtual auditing tool for 
collecting urban accessibility data at scale; (ii) results from 
an 18-month deployment and complementary data validation 
study exploring key behavioral and labeling quality 
differences between volunteer and paid crowdworkers; (iii) 
findings from semi-structured interviews with three 
stakeholder groups soliciting reactions to Project Sidewalk 
and identifying key concerns and design suggestions; (iv) 
and our open-source urban accessibility dataset. By scaling 
up data collection methods for sidewalk accessibility, our 
overarching aim is to enable the development of new 
accessibility-aware mapping tools (e.g., [23,31]), provide 
increased transparency and accountability about city 
accessibility, and work with and complement government 
efforts in monitoring pedestrian infrastructure. 
RELATED WORK 
We present background on sidewalk accessibility, existing 
methods for collecting street-level accessibility data, and 
volunteer geographic information (VGI) systems. 
Street-Level Accessibility 
Accessible infrastructure has a significant impact on the 
independence and mobility of citizens [1,39]. In the U.S., the 
Americans with Disability Act (ADA) [54] and its revision, 
the 2010 ADA Standards for Accessible Design [53], 
mandate that new constructions and renovations meet 
modern accessibility guidelines. Despite these regulations, 

pedestrian infrastructure remains inaccessible [17,27]. The 
problem is not just inaccessible public rights-of-way but a 
lack of reliable, comprehensive, and open information. 
Unlike road networks, there are no widely accepted 
standards governing sidewalk data (though some recent 
initatives are emerging [40]).  

While accessible infrastructure is intended to benefit broad 
user populations from those with unique sensory or physical 
needs to people with situational impairments [57], our 
current focus is supporting those with ambulatory 
disabilities. In Project Sidewalk, we focus on five high-
priority areas that impact MI pedestrians drawn from ADA 
standards [51–53] and prior work [34,36]: curb ramps, 
missing curb ramps, obstacles, surface problems, and the 
lack of a sidewalk on a pedestrian pathway.  
Data Collection Methods for Street-Level Accessibility  
Traditionally, collecting data on street-level accessibility has 
been the purview of local and state governments; however, 
with widespread access to the Internet and smartphones, 
three alternatives have emerged: in situ crowdsourcing 
where a user explicitly captures and reports data 
[11,15,35,37], automatic or hybrid reporting using sensors 
[8,28,30,43,47], and remote crowdsourcing using streetscape 
imagery [18,22,24,25]. Each approach has unique benefits 
and drawbacks—e.g., in terms of data type, maintenance, 
and coverage—and should be considered complementary. 
While in situ crowdsourcing relies on local knowledge and 
is likely to produce high-quality data, both academic and 
commercial tools have struggled with data sparsity [15], 
perhaps because of high user burden and low adoption. 
Automatic reporting tools lower user burden by implicitly 
capturing accessibility data using smartphone- or 
wheelchair-based sensors; however, accurately converting 
these quantitative measurements (e.g., accelerometer data) to 
useful sidewalk assessments is still an open research area. 
Moreover, these tools are limited to capturing where 
wheelchair users already go, not where they are unable to go 
(though [30] is attempting to address this limitation, in part, 
by combining sensor data with continuous video recording). 

Most related to our work are virtual auditing tools of street-
level accessibility using streetscape imagery. While initial 
research focused on establishing the reliability of GSV-based 
audits compared with traditional, physical-based methods 
[5,9,46,56], more recent work has introduced and evaluated 
web-based tools in controlled studies [18,22,24,25]. Project 
Sidewalk builds on these systems by gamifying the user 
experience and supporting open-world exploring via 
missions—similar to first-person video games. Additionally, 
we present the first public deployment study, which enables 
us to uniquely compare user behavior and labeling 
performance across user groups and contributes the largest 
open dataset on sidewalk quality in existence.  
Volunteered Geographic Information (VGI) 
Project Sidewalk is a new type of volunteered geographic 
information (VGI) system [21]. In VGI, non-experts 



contribute GIS-related data through open mapping tools—
e.g., Wikimapia, Mapillary, CycloPath [41], and most 
notably, OpenStreetMap (OSM). In comparison to more 
authoritative sources, VGI data quality and spatial coverage 
are key concerns [3]. While some studies have shown 
comparable quality between VGI and government maps 
[19,20,33], recent work has identified strong biases in 
contributions correlated with population density [32,44]. We 
address this limitation by combining both volunteer and paid 
crowd workers and by eliminating the need to have physical 
access to a place to contribute data. Our work contributes to 
VGI by analyzing contribution patterns and labeling quality 
differences between these two user groups.  
PROJECT SIDEWALK 
To use Project Sidewalk, users visit projectsidewalk.io on a 
laptop or desktop (touchscreens are not currently supported). 
The landing page provides a brief description of the tool—
both its purpose and how to use it—along with basic statistics 
and visualizations about collected data to encourage 
participation. Upon clicking the ‘Start Mapping’ button, new 
users are greeted by a multi-stage interactive tutorial to learn 
about the user interface and basic accessibility concepts. 
Once the tutorial is complete, users are auto-assigned a 
neighborhood in DC and given their first mission. Missions 
guide users through specific neighborhood streets: as the user 
walks virtually along their route, they are asked to find, label 
and rate street-level accessibility issues. After completing a 
mission, a “mission complete” screen is displayed and a new 
mission is assigned. Users can choose to contribute 
anonymously or to register and login. We prompt 

anonymous users to register after finishing their first street 
segment. Registered users can resume missions and check 
their contribution activity on an interactive dashboard. 
Currently, however, there is no way to view or compare 
performance to others (e.g., a leaderboard). 

Training users. Training crowdworkers is difficult, 
especially for subjective judgment tasks like classifying 
entities [2]. While a wide range of training approaches are 
possible—from ground truth seeding with real-time 
performance feedback to qualification tasks that ensure 
proficiency [45]—our current training strategy is three-
pronged. First, new users are presented with an interactive 
tutorial,  a technique common to modern video games called 
onboarding [42]. We onboard users through an initial guided 
mission that explains the UI and key game mechanics, 
provides information about street-level accessibility 
concepts, and monitors and helps the user correct mistakes. 
As users step through the onboarding experience, their 
mission status pane is updated just like a normal mission. In 
total, there are 37 onboarding parts, which are designed to 
take less than four minutes.  

Second, after completing onboarding, initial missions 
include pre-scripted help dialogs that are triggered based on 
user behavior. For example, after panning 360° around their 
first street intersection, Project Sidewalk helps the user use 
the top-down mission map to take a step in the right 
direction. These help dialogs are complementary to 
onboarding: there is an inherent tradeoff between building 
skills and knowledge through initial training time, and 
actually having the user begin using the tool in earnest.  

 
Figure 2. In Project Sidewalk, users are given missions to explore city neighborhoods and find accessibility problems. The UI is comprised of four parts: 
(center) GSV-based exploration and labeling pane; (top) button menu bar; (right) mission pane with progress tracking and navigation; (left) and settings menu. 



Finally, throughout every mission, our tool continuously 
observes user behavior and provides brief, transient usage 
tips to encourage proper labeling behavior and increase user 
efficiency. For example, if we observe that a user is not 
providing severity ratings, we provide a friendly reminder. If 
we observe only mouse clicks, we encourage keyboard 
shortcuts. These one-line tips auto-disappear and can also be 
explicitly dismissed. Importantly, we cannot provide 
corrective labeling feedback because we do not know about 
a label’s correctness a priori.  

Exploring and labeling. Similar to [22,25], Project 
Sidewalk has two modes of interaction: explorer mode and 
labeling mode. In explorer mode, users follow turn-by-turn 
directions to explore their assigned mission routes using 
GSV’s native navigation controls. If users get lost exploring, 
they receive reminders to return to their mission routes, 
which can be clicked to auto-jump back. At any location, the 
user can pan (360º horizontally and 35º vertically) and zoom 
to assess sidewalks more closely. The user’s FOV is 89.75º. 

Users enter the labeling mode by clicking on a labeling 
button. There are five primary label types: curb ramp, no 
curb ramp, obstacle, surface problem, and no sidewalk 
(Figure 3). In this mode, all interactions for controlling 
movement and the first-person camera view (e.g., pan, pitch) 
are disabled and the mouse cursor changes to a circular icon 
representing the selected label. To place a label, the user 
clicks directly on the accessibility target in the GSV image. 
A context menu then appears, which asks the user to rate 
problem severity on a 5-point scale where ‘5’ represents an 
impassable barrier for someone in a manual wheelchair. The 
user can also enter additional notes in a description text field 
or mark a problem as temporary (e.g., due to construction). 
After closing the context menu, Project Sidewalk 
automatically reverts to explorer mode.  

Project Sidewalk seamlessly repositions applied labels in 
their correct location as the user pans or zooms—thus, labels 
appear to “stick” to their associated target. However, once a 
user takes a step, their labels are no longer visible in the GSV 
interface (unless they return to their original labeling 
location). This is due to GSV API limitations. Instead, 
previously placed labels can be viewed on the top-down 
mission map.  

Missions. Missions serve a two-fold purpose: first, as a game 
mechanic, they provide an easy-to-understand and engaging 
narrative for directing data collection tasks. Second, from a 

system design perspective, missions provide a flexible 
approach to discretize, assign, and distribute work. Though 
we envision a variety of future mission types—e.g., data 
validation missions, labeling user supplied imagery—our 
current system focuses on encouraging exploration and 
labeling in the GSV interface. Users are assigned a high-level 
goal of auditing a neighborhood and then routed on missions 
of increasing length and complexity within that 
neighborhood. Mission lengths increase from 500ft to a 
maximum of 0.5mi (2,640ft). Mission feedback is provided 
via a mission status pane, completion screens, and, for 
registered users, an interactive dashboard. If a user gets stuck 
during a mission, they can choose to “jump” to a different 
part of their assigned neighborhood or manually choose a 
new neighborhood. For finishing a mission or completing a 
neighborhood, users are rewarded with mission completion 
screens and sound effects.  
IMPLEMENTATION, DATA, AND API 
Creating a robust, usable, and publicly deployable system 
required a significant engineering and human-centered 
design effort. Our open-source Github repository has 2,747 
commits from 20 team members and 43,898 lines of 
developed code (excluding comments). Project Sidewalk’s 
backend is built in Scala, and PostgreSQL with the PostGIS 
spatial extension and the frontend is in JavaScript and 
HTML/CSS. Below, we describe four key implementation 
areas: preparing a city for deployment, work allocation 
algorithms, triangulating and clustering labels, and our API. 

Preparing a city. Project Sidewalk has two data 
prerequisites for deployment: GSV and OSM. To construct a 
street network topology, we extract OSM <way> elements 
marked with street-related tags within a city’s geographic 
boundary. We also extract <node> and <nd> elements for 
metadata (e.g., lat-long coordinates) and links between nodes 
and edges. Because <way> polylines can extend multiple city 
blocks, we create smaller units, called street segments, by 
partitioning streets at each intersection. For DC, this resulted 
in 15,014 street segments with a total length of 1,164 miles. 
We filtered 892 segments that contained highways and/or 
where GSV imagery was unavailable due to government 
security precautions. In total, we were left with 14,037 
segments over 1,075 miles (Figure 4). 
Allocating and Distributing Work via Missions  
Allocating and distributing work is a two-step process 
consisting of assigning neighborhoods then street segments. 
We use the mission construct to do both. We iterated on these 

 
Figure 3. Project Sidewalk has five primary color-coded label types: curb ramps, missing curb ramps, obstacles, surface problems, and no sidewalk. The 
images above are example accessibility issues found by users in our public deployment.  



task allocation algorithms throughout our deployment as we 
discovered inefficiencies or mistakes. Below, we present our 
current approach, which was used for the last three months 
of our deployment, and briefly mention old approaches. 

Our current version is based on a “work quality” threshold 
determined by analyzing labeling behavior from our research 
group and informal manual reviews of end-user 
contributions. We define a “good” user as someone who 
contributes a minimum of 3.75 labels per 100 meters on 
average. While labeling frequency is an imperfect proxy for 
worker quality, it is easy to implement and fast to compute. 
We integrate this quality metric to prioritize street segments: 
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where x = cnt(“good” users) + 0.25 * cnt(“bad” users). This 
algorithm prioritizes street segments inversely proportional 
to the number of previous audits with a weight penalty 
assigned for “bad” users. 

Allocating neighborhoods. Users are given missions to 
explore and label assigned neighborhoods. Neighborhoods 
are allocated at two points: after a user completes onboarding 
and after they complete a previously assigned neighborhood. 
In earlier versions of Project Sidewalk, we randomly 
assigned users to neighborhoods within the top ten lowest 
completion rates. This approach, however, treated all 
previous work equivalently. In the current version, we 
incorporate street segment priority by first calculating the 
mean priority of all street segments for each neighborhood 
and then randomly assigning neighborhoods from a list with 
the top five highest means. Users can also choose their own 
neighborhoods; however, this feature was somewhat hidden 
and not prominently used in our deployment. 

Calculating mission routes. Mission routes are composed 
of street segments, which are dynamically selected when a 
user reaches an intersection (i.e., the end of a segment). To 
enhance immersion and limit user confusion, the routing 
algorithm attempts to select contiguous segments whenever 
possible. In older versions of Project Sidewalk, the segment 
selection algorithm simply chose a randomly connected 
segment that the current user had not already audited. 
However, this failed to incorporate work completed by other 
users, which was inefficient. In our current implementation, 
for each neighborhood, we maintain a discretized list of 
unaudited street segment priorities (bin size=0.25). When a 

user reaches an intersection, we randomly select any 
unaudited connected street segment with the same 
discretized priority as the highest one in the neighborhood 
list. If none exist, we inform the user that they have 
completed this part of the neighborhood and automatically 
transport them to the highest priority remaining 
neighborhood street. We use a similar process for positioning 
users when they first begin a new neighborhood—we place 
them at the beginning of the highest priority street segment.  
Project Sidewalk Data 
In Project Sidewalk, users label streetscape panoramas 
projected into 3D space [16]. We need to convert these 3D-
point labels to 2D lat-lng coordinates and then aggregate 
multiple labels for the same target into a single cluster. 

3D to 2D. To obtain geo-located labels from the 3D 
projection, we use: (i) the panorama’s 3D-point cloud data, 
which is obtained by LiDAR on the GSV cars; (ii) the lng,lat 
coordinate of the GSV car; and (iii) the ximg,yimg position of 
the label on the panorama. More specifically: 

A
𝑙𝑛𝑔(C)D*(
𝑙𝑎𝑡(C)D*(

F = 	 A
𝑙𝑛𝑔GHI_KC)
𝑙𝑎𝑡GHI_KC)

F +	L
∆𝑙𝑛𝑔
∆𝑙𝑎𝑡 N 

where we compute Δlng,Δlat by using the ximg,yimg label 
position on the panorama and the 3D-point cloud data to 
obtain the offset dx,dy,dz at ximg,yimg. The offset is in meters, 
which we convert to Δlng,Δlat and plug into the equation. 

Raw label data. For each label, we record three sets of 
information: who provided the label and when, how the data 
was collected in GSV (the user’s POV, heading, source 
panorama id), and information about the label itself, such as 
label type, lat-long position, x,y position on panorama, 
severity rating, textual description, and a temporary flag.  

Clustering. Because users can find and label the same 
accessibility problem from different panoramas, we needed 
to develop an algorithm to aggregate labels for the same 
target together. We do this by clustering. Each cluster refers 
to a single found problem (and may contain one or more raw 
labels). We use a two-stage clustering approach: single-user 
clustering followed by multi-user clustering. First, we 
consolidate raw labels for each individual user into 
intermediate clusters—this is necessary because some users 
choose to label a single problem from multiple viewpoints. 
Second, we combine these individual user clusters together 
to create our final cluster dataset. Both stages use the same 
hierarchical agglomerative clustering approach: the Vorhees 
clustering algorithm with the haversine formula to compute 
distances between labels and clusters. 

For stage one, we cluster raw labels of the same type that are 
within a certain distance threshold. Because some label types 
are often legitimately close together—e.g., two curb ramps 
on a corner—we use two different thresholds: 2 meters for 
curb and missing curb ramps and 7.5 meters for other label 
types. These thresholds were determined empirically by 
iteratively computing clusters at different threshold levels 

 
Figure 4. DC’s 179 neighborhoods and 14,037 street segments (1,075mi). 



from 0 to 50 meters (step size=1 meter) and qualitatively 
analyzing the results. Stage two clustering is similar but uses 
the centroids of stage one clusters with slightly looser 
thresholds (7.5 and 10 meters, respectively).  
Public API  
To enable the use and broader study of our collected data, we 
developed and released an initial public REST API 
(projectsidewalk.io/api). The API has three endpoint types: 
labels for obtaining raw label data, clusters for obtaining 
label clusters, and scores, which provide computed scores for 
street and neighborhood accessibility. Each API requires a 
lat-long bounding box to specify an area of interest for input 
and returns data in the GeoJSON format. For the score APIs, 
we developed a simple scoring model that incorporates the 
number of problem labels and returns an accessibility score 
between 0 and 1. Providing a robust, personalizable, and 
verifiable scoring algorithm is ongoing work. 
DEPLOYMENT STUDY 
In August of 2016, we launched an 18-month deployment 
study of Project Sidewalk. Washington DC was selected as 
the study site because of its large size (158 km2), diverse 
economic and geographic characteristics, and substantial 
commuter population—many of whom take public transit 
and use pedestrian infrastructure [50]. Additionally, as the 
nation’s capital, which draws ~20m visitors/yr [55] , there is 
increased pressure to follow and model ADA guidelines.  

We recruited two types of users: volunteers through social 
media, blog posts, and email campaigns, and paid crowd 
workers from Amazon Mechanical Turk (turkers). We 
further divide volunteers into anonymous and registered 
groups; the former was tracked by IP address. For 
comparison, we also show data from 28 members of our 
research lab, who voluntarily contributed to help test the tool 
and received in-person training on how and what to label. We 
paid turkers a base amount for completing the tutorial and 
first mission ($0.82) and a bonus amount for each mission 
completed thereafter ($4.17/mile). These rates were based on  
US federal minimum wage ($7.25/hr), assuming an expected 
labeling rate of 1.74 miles/hr, which was drawn empirically 
from our data. In practice, our turkers earned $8.21/hr on 
average (SD=$5.99), which increased to $12.76 (SD=$6.60) 
for those 69 turkers who audited at least one mile. Turkers 
could see their earnings in real-time via the mission panel. 
We posted a total of 298 assignments over a 6-month period. 

Results 
Overall, Project Sidewalk had 11,891 visitors to the landing 
page, of which 797 (627 volunteers; 170 turkers) completed 
the tutorial and audited at least one street segment in the first 
mission. In total, these users contributed 208,137 labels and 
audited 2,941 miles of DC streets (Table 1). Below, we 
analyze user behavior, contribution patterns, dropoff, and 
responses from a pop-up survey given to turkers. We 
examine worker and data quality in a separate section. 
User behavior. On average, registered users completed 
more missions (5.8 vs. 1.5), contributed more labels (171.1 
vs. 33.7), audited faster (1.93 mi/hr vs. 1.22), and spent more 
time on Project Sidewalk (55.8 mins vs. 18.3) than 
anonymous users (Table 2). Registered users also took 
longer on onboarding (6.9 mins vs. 3.8) and left more open-
ended descriptions (10.0 vs. 1.6). Paid workers, however, did 
significantly more work on average than either volunteer 
group: 35.4 missions, 887.3 labels, and spent 4.4hrs using the 
tool. If we examine only those users who passed our “good” 
user heuristic, we filter 28.2% paid, 23.7% anonymous, and 
22.6% registered workers; however, relative user behaviors 
stay the same. Similar to [29], user contribution patterns 
resembled a power law distribution: the top 10% anonymous, 
registered, and paid workers contributed 56.7%, 86.6%, and 
80.2% of the labels in their group, respectively. By the top 
25%, contributions rose to 77.4%, 93.6%, and 94.8%.  
User dropoff. To examine user dropoff, we analyzed 
interaction logs for the last eight months of our deployment 
(after we added comprehensive logging to the tutorial). User 
dropoff was steep. While 1,110 users started the tutorial, only 
568 finished it (51%), 479 (43.2%) took one step in their first 
mission, and 328 (29.5%) completed at least one mission. Of 
those 328, a majority, went on to finish their second mission 
(59.8%; 196 users) and then dropoff dampened substantially. 
For example, 74.0% of the users who completed Mission 2 
also completed Mission 3. When splitting the 1,110 users by 
group—846 volunteers and 264 turkers—we found different 
patterns of behavior. While only 43.9% of volunteers 
finished the tutorial and only 19.1% finished the first 
mission, turkers were far more persistent: 74.6% finished the 
tutorial and 62.9% completed the first mission.  

 

Volunteers 
Turkers  
(N=170) 

Researchers 
(N=28) 

Total  
Labels 

Total 
Clusters* 

Anon 
(N=384) 

Registered  
(N=243) 

Curb Ramp 10,631 27,144 88,554 18,336 144,665 51,098 
M. Curb Ramp 1,310 3,250 13,262 1,138 18,960 7,941 
Obstacle 1,105 2,827 16,154 1,498 21,854 12,993 
Surf. Prob. 765 1,896 3,216 2,591 8,468 5,647 
No Sidewalk 1,414 6,211 28,181 7,919 43,725 23,468 
Occlusion 68 310 462 438 1,278 953 
Other 92 148 1,137 34 1,411 928 
Total Labels 15,385 41,786 150,966 31,954 240,091 103,028 

Table 1. The total amount of data collected during our deployment. *Total 
clusters refers to filtered data only. All other columns are the full dataset. 

 
Anonymous Registered Turkers Researchers 

All  Filtered  All Filtered All Filtered All Filtered 
Num users 384 293 243 188 170 122 28 21 

% Filtered -- 23.7% -- 22.6% -- 28.2% -- 25.0% 
Tot. miles 155.5 79.9 535.6 391.6 2,248.9 1,016.4 238.5 211.7 

Avg. (SD) 0.4 (1.2) 0.3 (1.0) 2.2 (8.2) 2.1 (9.1) 13.2 (37) 8.3 (32) 8.5 (19) 10.1 (22) 
Tot. missns 576 316 1,406 1,044 6,017 2,953 690 604 

Avg (SD) 1.5 (3) 1.1 (2.5) 5.8 (20) 5.6 (22) 35.4 (95) 24.2 (87) 24.6 (53) 28.8 (62) 
Tot. labels 12,950 10,760 41,588 35,923 150,847 103,820 31,954 30,488 

Avg  33.7 36.7 171.1 191.1 887.3 851.0 1,141.2 1451.8 
Lbls/100m 8.0 10.5 5.8 6.8 7.1 8.9 6.0 7.1 

Avg. speed  1.22 0.74 1.93 1.58 1.68 1.14 2.76 2.57 
Avg time  18.29 17.59 55.83 57.88 266.20 225.22 195.81 233.84 
Avg desc  1.6 1.9 10.0 12.1 47.2 58.1 28.1 37.0 

Table 2. The total amount of data collected during our deployment. 
Averages are per user. Avg. speed is in mi/hr, time is in mins, lbls/100m is 
median labels per 100m, and ‘avg desc.’ is # of open-ended descriptions.   



Pop-up survey. To begin exploring why users contribute to 
Project Sidewalk, we developed a 5-question survey shown 
to users after their second mission. The first three questions 
asked about task enjoyment, difficulty, and self-perceptions 
of performance via 5-point Likert scales while the last two 
questions were open-ended asking about user motivation and 
feedback. A single researcher analyzed the two write-in 
questions via inductive coding. Though the survey is now 
given to all user groups, it was only available to turkers 
during our deployment study—which we analyze here. 

In all, 123 turkers completed the survey. Of those, 110 
(89.4%) stated that they enjoyed using Project Sidewalk 
(M=4.4; SD=0.7). For task difficulty, the responses were 
slightly more mixed: 83 turkers (67.5%) selected easy or very 
easy and 5 selected difficult (avg=3.9; SD=0.9). When asked 
to self-rate their performance, 81 turkers (65.9%) felt that 
they did at least a very good job and none reported poor 
(avg=4.0; SD=0.9). For the first open-ended question 
(required) about user motivation, 74 (60.2%) mentioned that 
the task was interesting or fun—“It was an interesting and 
unique change to my day” (U111); 48 (39.0%) felt that the 
task was important/helpful—“I think it is important for those 
who are using wheelchairs to be able to safely navigate 
streets.” (U223); and 20 (16.3%) mentioned money—“It 
was interesting work and good pay” (U61). The last question 
was optional and asked for feedback: 68 turkers chose to 
answer, mostly to thank us for the task (55 of 68): “Good & 
interesting task. Thank you” (U96). Six suggested features, 
five asked questions about labeling, and two reported bugs.  
DATA VALIDATION STUDY 
To investigate data quality and compare performance across 
user groups, we performed a data validation study using a 
subset of DC streets. This study occurred approximately 
halfway into our public deployment. Because pedestrian 
infrastructure can differ based on neighborhood type (e.g., 
commercial vs. residential), age, and density, we first divided 
DC into four quadrants based on official geographic 
segmentation data [12]. We then sub-divided each quadrant 
into land-use zones using DC’s open zoning regulation 
dataset [13]. Finally, we randomly selected the first two or 
three mission routes completed by individual volunteer 
users. This resulted in a test dataset of 44 miles (625 street 
segments) from 50 registered and 16 anonymous users across 
62 of the 179 DC neighborhoods. We then verified that the 
selected routes had similar geographic and land-use 
distributions compared to all streets in DC. 

To compare volunteer vs. paid worker performance, we 
posted the selected missions in our test dataset to Amazon 
Mechanical Turk. Other than payment, we attempted to 
carefully mimic the volunteer work experience: individual 
turkers completed onboarding and then were implicitly 
assigned either an anonymous user’s mission set (two) or a 
registered user’s mission set (three). To control for 
experience and learning effects, we did not allow 
deployment turkers to participate. We paid workers based on 

US federal minimum wage drawn from median volunteer 
completion times: $2.00 for the tutorial + two missions 
(~2,000ft) and $3.58 for the tutorial + three missions 
(~4,000ft). Unlike the deployment study, turkers could not 
choose to complete additional missions for bonus payment. 
To examine the effect of multiple labelers on performance, 
we hired five turkers per mission set for a total of 330 turkers. 

To create ground truth, we first developed a labeling 
codebook based on ADA guidelines [51–53], which was then 
vetted and refined by a person who has used a wheelchair for 
20 years. Following iterative coding [26], three researchers 
began labeling the same subset of data: one randomly 
selected mission set for an anonymous user and one for a 
registered user. For each round, the researchers met, resolved 
disagreements, and updated the codebook accordingly. After 
seven rounds, the average Krippendorff alpha score was 0.6 
(range=0.5-0.8) and raw agreement: 85.4% (SD=4.1%). The 
three researchers then split the remaining 52 mission sets 
equally and a final review was performed. In total, ground 
truth consists of: 4,617 clusters, including 3,212 curb ramps, 
1,023 surface problems, 295 obstacles, and 87 missing curb 
ramps. Though laborious, we note that the ground truth 
approach allows us to more deeply examine labeling 
performance compared with verifying placed labels—as the 
latter does not allow us to calculate false negatives. 

Analysis. We examine accuracy at the street-segment level. 
We first cluster all labels from anonymous, registered, and 
paid workers using single-user clustering. We then use 
haversine distance to associate label clusters to their closest 
street segment. To compute our accuracy measures, we sum 
the number and type of label clusters for each segment and 
compare the result to ground truth. This produces counts of 
true/false positives and true/false negatives at each segment, 
which we binarize for final analysis. In total, 89.6% 
(560/625) of the street segments contained accessibility 
labels in ground truth. Unlike the four other label types, the 
no sidewalk label is not used for single-point targets but 
rather targets that extend multiple panoramas. Thus, we 
exclude this label from our analysis below. 

We report on raw accuracy (number of segments that match 
ground truth), recall, and precision. Here, recall measures 
the fraction of accessibility targets that were found (labeled) 
compared to those in ground truth while precision measures 
the correctness of those labels. Ideally, each measure would 
be 1.0; however, similar to other crowdsourcing systems 
(e.g., [25]), we prefer high recall over precision because 
correcting false positives is easier than false negatives—the 
former requires verification while the latter requires users 
actually re-explore an area. Except for the multiple labelers 
per segment analysis, we use only the first hired turker for 
each mission (rather than all five). For statistical analysis, we 
use binomial mixed effects models with user nested in 
mission route id and a logistic link function with accuracy, 
recall, and precision modeled as binomials. We assess 
significance with likelihood-ratio (LR) tests and use post-hoc 



Tukey’s HSD tests to determine statistical orderings. Our 
analysis was performed using the R statistical language. 
Results 
We examine overall performance across user groups, the 
effect of label type, label severity, and multiple labelers on 
accuracy, and common labeling mistakes.  

User performance. The overall average raw accuracy was 
71.7% (SD=13.0%) with all three user groups performing 
similarly (~70%). Because of the high true negative rates in 
our data—that is, most panoramas do not have accessibility 
issues and were correctly labeled that way—recall and 
precision are more insightful measures (Figure 5). Turkers 
found significantly more issues compared with registered 
and anonymous (recall=67.8% vs. 61.4% vs. 48.8%, 
respectively) at similar precision levels (68.8% vs. 72.2% vs. 
74.5%). Using an LR test, we found user group had a 
statistically significant association with recall (lr=21.6, df=2, 
n=132, p<0.001) and precision (lr=7.1, df=2, n=131, 
p=0.028) but not raw accuracy. Pairwise comparisons for 
recall were all significant but none were for precision.  

To explore the effect of multiple labelers on performance, 
recall that we hired five turkers per mission set. We examine 
majority vote for each group size (3, 5) as well as treating 
each contribution individually (e.g., Turk3maj vs. Turk3all). 
We expect that Turkmaj will result in higher precision but 
lower recall as it requires more than one user to label the 
same target and just the opposite from Turkall (i.e., higher 
recall, lower precision). Indeed, this is what we found: from 
Turk1 (baseline) to Turk5all, recall rose from 67.8% to 91.7% 
but at a cost of precision (from 68.8% to 55.0%). In contrast, 
for majority vote, recall fell from 67.8% to 59.5% but 
precision rose from 68.8% to 87.4%. Again, we found turker 
group had a statistically significant association with recall 
(lr=498.96, df=4, n=330, p<0.001) and precision (lr= 
374.88, df=4, n=330, p<0.001). All pairwise comparisons 
for recall and precision were significant except for Turk5maj 

< Turk3maj—for recall only. 

 
Figure 5. Average recall and precision for all user groups. 

Label type. To examine accuracy as a function of label type, 
we analyzed labeling data across users (Table 3). Curb ramps 
were the most reliably found and correctly labeled with 
recall=86.0% and precision=95.4% respectively. In 
contrast, while no curb ramps had reasonably high recall at 
69.3%, precision was only 20.5% suggesting an incorrect 
understanding of what justifies a no curb ramp label. The 
other two label types, obstacle and surface problem, had 
lower recall (39.9% and 27.1%) but comparatively higher 

precision (47.5% and 72.6%), which mirrors our experience 
with ground truth—these accessibility problems are hard to 
find and require diligent exploration. In addition, these two 
label types can legitimately be switched in some cases (e.g., 
a patch of overgrown grass could be marked as either an 
obstacle or surface problem). We explore labeling mistakes 
in more detail below.  
 Gnd Truth Clusters Raw Acc. Recall Precision 
Curb Ramp 3,212 83.7 (23.1) 86.0 (25.7) 95.4 (7.5) 
No Curb Ramp 87 72.9 (21.9) 69.3 (43.5) 20.5 (31.7) 
Obstacle 295 71.2 (18.8) 39.9 (36.9) 47.5 (37.4) 
Surface Problem 1,023 59.0 (24.8) 27.1 (30.5) 72.6 (35.4) 

Table 3. Accuracy by label type. All pairwise comparisons are significant. 
Effect of severity. We hypothesized that high-severity 
problems would be easier to find. To explore this, we 
partitioned ground truth labels into two groups: low severity 
(<= 2 rating) and high severity (>= 3 rating). The low severity 
group contained 1,053 labels and the high 352 labels. As 
expected, we found that high-severity labels had 
significantly higher recall (Mdn=83.3%; avg=69.8%; 
SD=35.5%) than low-severity labels (Mdn=56.3%; 57.0%; 
SD=32.3%). To determine significance, we created a 
binomial mixed effect model with severity (high or low) as 
the fixed effect and user nested in mission route id as random 
effects. Result of LR test (lr=10.6, df=1, n=246, p=0.001). 
Common Labeling Errors 
To better understand labeling errors and to contextualize our 
quantitative findings, we conducted a qualitative analysis of 
labeling errors. We randomly selected 54 false positives and 
54 false negatives for each label type, which resulted in 432 
total error samples from 127 anonymous, 141 registered, and 
210 paid workers. A single researcher inductively analyzed 
the data with an iteratively created codebook. We show the 
top three errors with examples in Figure 6. In analyzing false 
positives, we observed that most mistakes were 
understandable and either easy to correct with better training 
or innocuous. For example, 66.7% of incorrect curb ramp 
labels were applied to driveways, nearly half of obstacles and 
surface problems were potentially legitimate issues but not 
on the primary pedestrian route (e.g., middle of street vs. 
crosswalk), and almost 30% of incorrect missing curb ramps 
were on extended residential walkways. Moreover, 32.7% of 
surface problems and 9.3% of obstacles were correctly 
labeled as problems but with a different label type from 
ground truth—e.g., a surface problem marked as an obstacle. 

For false negatives (i.e., a user did not label a problem when 
one exists), it is harder to discern clear patterns—at least for 
some label types. For obstacles and surface problems—both 
of which had the lowest recall and thus can be considered 
hardest to find—salience appears to be a contributing factor: 
50% of missed obstacles were only partially blocking the 
pedestrian path and nearly 30% of surface problems were 
grass-related. For missing curb ramps, 46.3% of missed 
labels were at a corner where at least one other curb ramp 
exists though the second most common error was more 
egregious: a pedestrian path to a street had no curb ramp and 
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no alternative accessible route (37.0%). We discuss potential 
solutions to address labeling errors in the Discussion.  
SEMI-STRUCTURED INTERVIEW STUDY 
To complement our deployment and data validation studies 
and to solicit reactions to Project Sidewalk from key 
stakeholders, we conducted an interview study with three 
DC-area groups (N=14): six government officials (G), five 
people with mobility impairments (MI), and three caregivers 
(C). G included state and city transportation employees with 
oversight of pedestrian infrastructure, MI participants used a 
mobility aid such as a wheelchair or cane, and caregivers 
took care of a person with a MI either as a professional, 
family member, or friend. Participants were recruited via 
mailing lists, word-of-mouth, and social media. 

The three-part study began with a semi-structured interview 
about participants’ current perceptions of and problems with 
urban accessibility. We then asked participants to use Project 
Sidewalk while “thinking aloud.” Finally, we concluded with 
a debrief interview about the tool, including its perceived 
utility, concerns, and design ideas. Sessions lasted between 
60-65 minutes, and participants were compensated $25. One 
government session was a group interview with three 
participants (coded G3); all other interviews were individual. 
Sessions were audio- and screen-recorded, which were 
transcribed and coded to find emergent themes using peer 
debriefing [10,48]. Using deductive coding, one researcher 
created an initial codebook for the interviews, which was 
refined with the help of a peer. A randomly selected 
transcript was then coded, which was reviewed by a second 
researcher using peer-debriefing. To resolve conflicts and 
update the codebook, the two researchers met after each 
review process. The final codebook was produced after three 
iterations (one transcript per stakeholder group). The 
remaining data was then coded by the initial researcher. 
Results 
We describe findings related to the perceived value and 
usability of Project Sidewalk as well as design suggestions 
and concerns. For quotes, we use (participant group + id). 

Perceived value. Overall, all three stakeholder groups felt 
that Project Sidewalk enabled rapid data collection, allowed 
for gathering diverse perspectives about accessibility, and 
helped engage citizens in thinking about urban design. 
Government officials emphasized cost-savings and 

community involvement envisioning Project Sidewalk as a 
triaging tool before sending out employees to physically 
examine areas: “It's really good for a starting point. This is 
a first observation, and when you send somebody out in the 
field, they can see those observations and pick up more 
information. It's just neat” (G4). The MI and caregiver 
groups focused more on personal utility, envisioning 
accessibility-aware navigation tools that could incorporate 
Project Sidewalk data: “I might take advantage of more 
opportunities knowing that, okay, if I could rely on the data 
and knew I could anticipate how difficult it was going to be 
for me to get around” (MI1). Six of the seven MI and 
caregiver participants mentioned that Project Sidewalk data 
could enhance their independence, give them confidence to 
explore new and unfamiliar areas, and/or help them achieve 
the same pedestrian rights as everyone else.  

Usability. Participants across groups felt that the tool was 
easy-to-learn and fun to use. G3, for example, stated: “I think 
it's awesome. [...] It's a lot of fun” and reported “feeling 
good” contributing data to a social purpose while also being 
motivated by the game design elements: “we're looking at 
the 71 percent complete, and we're pretty excited!” Three 
participants appreciated relying on a familiar technology like 
GSV, “You're not introducing like yet another platform that 
somebody has to relearn—that was helpful” (G3). Almost 
everyone (13/14) found the labeling system comprehensive 
as captured by MI3: “the labeling is pretty all-inclusive.” 

Concerns. Key concerns included outdated GSV imagery or 
labels (N=6), data reliability (3), and conflicting data (4). 
Towards outdated imagery and labels, C1 asked “if a street 
light was marked as an obstacle and if it was replaced or 
moved, would the labels reflect that?” While this is one 
limitation of our virtual auditing approach, four participants 
mentioned that they would rather be aware of a potential 
issue even if it no longer existed. For example, C2 stated: “if 
there was a label, I’d rather be aware of it.” For data 
reliability, G4 suggested that each road be audited by 
multiple people: “I would have more confidence if different 
people did it, did the same street.” Four participants (2 Cs, 2 
MIs) were concerned about how labelers may differ in 
interpreting problems compared with their needs and 
experiences. For example, MI1 said: “my concern as a 
user…someone said this was accessible and I got there and 

 
Figure 6. An overview of false positive and negative labeling mistakes ordered by frequency (taken from 432 error samples in the data validation study). 



it wasn't accessible, because everyone has different opinions 
on accessibility.”  

Suggestions. Participants suggested developing mechanisms 
to keep information up-to-date (4)—for example, by adding 
a complementary smartphone-based data collection app, 
adding verification interfaces (3), and surfacing data age (2). 
All government officials were interested in ways to export 
and visualize the data; one suggested integrating directly into 
their service request backend. At a more detailed tool level, 
seven participants suggested adding new label types, 
including for crosswalks, the presence of sidewalks, access 
points (such as driveways), and construction.  
DISCUSSION AND CONCLUSION 
Through a multi-methods approach, our results demonstrate 
the viability of virtually auditing urban accessibility at scale, 
highlight behavioral and labeling quality differences 
between user groups, and summarize how key stakeholders 
feel about Project Sidewalk and the crowdsourced data. 
Below, we discuss worker and data quality, future 
deployment costs and worker sources, and limitations. 

Label quality. Our data validation study found that, on 
average, users could find 63% of accessibility issues at 71% 
precision. This is comparable to early streetscape labeling 
work by Hara et al. [24], where turkers labeled at 67.0% and 
55.6% for recall and precision, respectively; however, our 
tasks are more complex, contain more label types, and are 
evaluated at a larger scale. Like [24], we also show how 
assigning multiple labelers can improve results and describe 
tradeoffs in aggregation algorithms—e.g., by combining 
labels from five turkers per street, recall rose to 92%; 
however, precision fell from 69% to 55%. We believe our 
findings represent a lower bound on performance and 
provide a nice baseline for future work.  

To improve quality, we envision four areas of future work: 
first, a more sophisticated workflow pipeline that 
dynamically verifies labels [6,45], allocates the number of 
assigned labelers/street based on inferred performance, and 
integrates other datasets (e.g., top-down imagery). Second, 
though not explored in this paper, our mission-based 
architecture supports a large variety of diverse mission 
tasks—e.g., verification missions and ground truth seeding 
missions, both which will enable us to more reliably identify 
poor-quality workers. Third, Project Sidewalk currently 
relies solely on manual labeling; we are experimenting with 
deep learning methods trained on our 240,000+ image-based 
label dataset to detect problems automatically (building on 
[25,49]), triage likely problem areas, and/or aid in 
verifications. Finally, our results suggest that many false 
positives could be corrected via improved training (e.g., a 
driveway is not a curb ramp) and by using simple automated 
validation (e.g., check for labels in unlikely areas). 

Data age. Our interview participants raised two concerns 
about data age: GSV image age and label age. Towards the 
former, prior work has found high agreement between virtual 

audit data of pedestrian infrastructure compared with 
traditional audits [5,9,22,25,46,56] . Google does not publish 
how often their GSV cars collect data; however, in a 2013 
analysis of 1,086 panorama sampled across four North 
American cities, the average age was 2.2yrs (SD=1.3) [25]. 
In our dataset, workers labeled 74,231 panoramas, which at 
the time of first label, were also M=2.2yrs old (SD=1.5). As 
a comparison, the official opendata.dc.gov curb ramp dataset 
[14] was captured in 1999 and last updated in 2010 (no other 
label types are included). Moreover, our general approach 
should work with any streetscape imagery dataset, including 
Mapillary [29], CycloMedia, or Bing StreetSide—many of 
which are exploring high-refresh methods via automated 
vehicles and crowd contributions. In terms of maintaining 
labels over time, one benefit of our scalable approach is that 
streets can be periodically re-audited and old labels can be 
used to study historical change (e.g., [38]).  

Cost. While future deployments could rely solely on paid 
workers, ideally Project Sidewalk would also engage online 
and local communities who are concerned with urban 
accessibility. Based on our deployment study, we estimate 
that auditing DC with 100 paid workers alone would cost 
$34,000 and take 8 days (assuming five labelers/street, 8hrs 
of work per day, and that 72 of 100 met our “good” user 
quality threshold). If one-third of DC was audited by 
volunteers, costs fall below $25,000. DC is a large city and 
has a well-resourced DOT with fulltime ADA compliance 
staff; small-to-medium sized cities often lack ADA budgets 
and could particularly benefit from Project Sidewalk. Indeed, 
we have been contacted by more than a dozen cities in the 
US and Canada about future deployments.  

Limitations. There are three main limitations with 
crowdsourcing virtual audits: panorama age, label quality, 
and the ability for crowdworkers to see and assess sidewalks 
from GSV. We addressed the former two points above. 
Towards the latter, users could mark areas as occluded in our 
tool (e.g., a truck blocking a sidewalk); however, occlusion 
constituted only 0.4% of all applied labels in our deployment 
suggesting that most sidewalks are visible. For study 
limitations, we employed a multi-methods approach to 
mitigate the effects of any one study technique. Still, 
longitudinal deployment studies are messy and ours is no 
exception: we lost over two months of deployment time due 
to changes in the GSV API, maintenance upgrades to our 
servers, and personnel changes. For the data validation study, 
we were unable to consistently reach high α agreement for 
obstacles and surface problems during our seven iterative 
rounds of coding; these label types are challenging and can 
be legitimately conflated (e.g., marking overgrown grass as 
a surface problem vs. an obstacle). Our performance results 
for these label types may have been impacted. Finally, while 
our studies take place in the US, accessible infrastructure is 
a global problem. Project Sidewalk should work wherever 
there is GSV and OSM. 
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